\square

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (Mechanical) I-Semester (Main) Examinations, December - 2015

Mechanics of Materials

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B
Part-A (10×2 20 Marks)

1. Differentiate between Strength and Stiffness.
2. Define modular ratio and poisons ratio.
3. Adsimply supported beam carries a uniformly distributed load of $w N$ per meter length over the whole span. Determine the shear force and B.M. at center.
4. Determine the section modulus for a rectangular beam of size $\mathrm{B} \times \mathrm{D}$ and solid circular section of radius R .
5. Define principal plane and principal stress.
6. Determine the slope and deflection of a simply supported beam of span L carrying a point load W at center.
7. Define flexural rigidity and torsional rigidity.
8. Stiffness of the spring is defined as \qquad required to produce \qquad .
9. What is the core of the section of the column and draw the core of rectangular section?
10. Distinguish between thin and thick cylindrical shells.

Part-B ($5 \times 10=50$ Marks)

11. a) A steel cube block of 50 mm side is subjected to a force of 10 kN (tension) 12.5 kN (compression) and 7.5 kN (tension) along x, y and z directions respectively, Determine the change in volume of the block. Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $1 / \mathrm{m}=0.3$.
b) A steel rod 3 cm diameter and 5 m long is connected to two grips and rod is maintained at a temperature of $95^{\circ} \mathrm{C}$. Determine the stress and pull exerted when the temperature falls to $30^{\circ} \mathrm{C}$, if the ends do not yield. Take $\mathrm{E}=2 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$ and $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
12. a) A cast iron pipe of 60 mm external diameter, 40 mm internal diameter and of length 5 m is supported at its ends. Calculate maximum bending stress induced in the pipe if it carries a point load of 100 N at center.
b) A simply supported beam of length 10 m , carries the uniformly distributed load and two point loads as shown in figure. Draw the SFD and BMD for the beam.

13. a) A beam of T-section is subjected to a shear force of 50 kN . The dimensions of the beam are $100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 20 \mathrm{~mm}$. Calculate the shear stress at the neutral axis and at the junction of the web and the flange.
b) Write the significance of Mohr's circle and its uses.
14. a) A cantilever beam rectangular cross section carries a UDL over whole span. The deflection at the free end is ' Y '. If the distributed load and also depth of the beam is doubled. Determine the deflection at free end.
b) A solid shaft of 200 mm diameter has a same cross sectional area as a hollow shaft of the same material with inside diameter of 150 mm . Find the ratio of i) power transmitted by both the shafts at the same angular velocity. ii) Angles of twist in equal lengths of these shafts, when stressed to the same intensity.
15. a) A column of timber section $15 \mathrm{~cm} \times 20 \mathrm{~cm}$ is ${ }^{-6 \mathrm{~m}}$ long both ends being fixed. If the young's modulus for timber is $17.5 \mathrm{kN} / \mathrm{mm}^{2}$. Determine i) crippling load and ii) safe
A load for the column if factor of safety is 3 .
b) Derive the expressions for circumferential and longitudinal stresses in thin cylinder closed at both ends and subjected to an internal fluid pressure.
16. a) A bar of 25 mm diameter is subjected to a pull of 40 kN . The measured expression on gauge length of 200 mm is 0.085 mm and the change in diameter is 0.003 mm . Calculate the Poisson's ratio and the value of three moduli.
b) Show that for a beam subjected to pure bending, neutral axis coincides with the centroid of the cross section.
17. Answer any two of the following:
a) For a rectangular section, show that the maximum shear stress is $3 / 2$ times the average Shear stress.
b) Calculate the thickness of metal necessary for a thick cylinder of internal diameter 150 mm to withstand and internal pressure of 50MPa. The maximum hoop stress in the section is not to exceed 150 MPa .
c) The maximum allowable shear stress and bending stress in solid shaft is 80 MPa and 120 MPa respectively. Determine the diameter of the shaft if it is subjected to a torque of $4 \mathrm{kN}-\mathrm{m}$ and bending moment of $3 \mathrm{kN}-\mathrm{m}$.
